
	No. De Control:
	XMI-A28-G-01
	Número de Revisión:
	00
	Fecha de Aprobación:
	XX-XX-XX
	XIGA Movilidad Inteligente,
S.A. de C.V.

	Título del documento:
	Guía modelo de ciclo de vida
	

Requisito aplicable: 53

	XIGA Movilidad Inteligente,
S.A. de C.V.

	Historial de cambios

	Revisión
	Fecha
	Razón del Cambio

	00
	XX-XX-XX
	· Documento de nueva creación bajo el sistema de administración XIGA Movilidad Inteligente.

	Nombre
	Merced Ortiz
	Miguel Ricario
	Elodia Robles

	Puesto
	Coordinador de Proyectos
	Gerente de XIGA
	Representante Legal

	Firma
	
	
	

	
	Elaboró
	Revisó
	Aprobó

1. Objetivo
1.1 Establecer una guía para la definición e implementación del ciclo de vida de proyectos en la Organización Xiga.

2. Alcance
2.1 [bookmark: _GoBack]La guía cubre los tipos, fases y etapas que comprenden los ciclos de vida en que pueden basarse los proyectos del Monedero XIGA.

3. Introducción
3.1 Un modelo de ciclo de vida de Software describe un proceso de proyectos con inicio y fin, este incluye las fases o actividades que ocurren durante el desarrollo de software, así como las etapas involucradas y los criterios de transición asociados a las etapas de la Administración del Proyecto.
3.2 Para elegir el modelo de ciclo de vida más efectivo se debe verificar el tamaño, complejidad y naturaleza del proyecto. Además, se tomará en cuenta si el proyecto cumple determinadas condiciones para que sean evaluadas e implementadas.
3.3 Antes de seleccionar el modelo de ciclo de vida de proyectos, se deben tomar en cuenta las siguientes consideraciones:
· Trabajo con requerimientos mal entendidos: Se refiere a determinar si el modelo es efectivo cuando los requerimientos de la aplicación no son bien entendidos. También aplica, cuando el cliente tiende a cambiar mucho los requerimientos del proyecto.
· Trabajar con arquitectura mal entendida: Se refiere a determinar si el modelo es efectivo cuando se trabaja en una nueva área de aplicación, con funcionalidades nuevas.
· Sistema con amplia cobertura de crecimiento: Se refiere a la facilidad de modificar un sistema independientemente del tamaño o complejidad. Incluye la portabilidad y adaptabilidad.
· Restringido a un calendario determinado: Se refiere a la habilidad de que el proyecto sea entregado en fechas definidas e inamovibles.
· Permitir correcciones a mitad del proyecto: Se refiere a la capacidad de realizar cambios a la mitad del transcurso del proyecto. Los cambios o correcciones deben ser factibles en los proyectos.
· Proporcionar visibilidad de progreso al cliente: Se refiere a la facilidad de generar reportes de estatus y seguimiento de los proyectos para el cliente. Informar los resultados del proyecto en cualquier etapa.
· Proporcionar visibilidad de progreso a la administración: Se refiere a la facilidad de generar reportes de estatus y seguimiento de los proyectos para la Dirección y Gerencia.

3.4 Lineamientos de desarrollo seguro.
3.4.1 En los desarrollos se aplican prácticas para asegurar la calidad y funcionalidad del sistema XIGA, para soportes e implementaciones de seguridad nuevas que se van desarrollando para robustecer la plataforma. Por tal razón, se integra la seguridad en el proceso de desarrollo puede ser apoyada por herramientas de software que elija la organización. La implementación de un ciclo de vida de desarrollo de software seguro (SDLC).
3.4.1.1 Descripción del S-SDLC. El ciclo de desarrollo se distribuye en:
· Planificación y requisitos.
· Arquitectura y diseño.
· Prueba de planificación.
· Codificación.
· Pruebas y resultados.
· Lanzamiento y mantenimiento.

3.4.1.2 Dentro de cada fase se realizan diferentes tareas para asegurar la correcta implementación de nueva funcionalidad de acuerdo con las necesidades que se requieran en el sistema.

3.4.1.3 El objetivo de esto es mantener el desarrollo en un ambiente seguro en todas sus fases, desde que existe una solicitud en papel hasta que se entrega una funcionalidad en un ambiente productivo.

3.4.1.4 El modelo estándar de SDLC (Cascada, Iterativo, Ágil, etc.) incluye las siguientes fases:

· Planificación y requisitos.
· Arquitectura y Diseño.
· Prueba de planificación.
· Codificación.
· Pruebas y resultados.
· Lanzamiento y mantenimiento.

3.4.1.5 Al integrar actividades a través del SDLC contribuye a descubrir y reducir vulnerabilidades de manera temprana, incorporando efectivamente la seguridad y conceptos de Secure SDLC.

3.4.1.6 Un proceso Secure SDLC con actividades de garantía de seguridad, como las pruebas de penetración, la revisión d código y el análisis de arquitectura, sean una parte integral del esfuerzo de desarrollo.

3.5 PenTesting
3.5.1 Además, estas metodologías descritas y sus capacidades en pruebas de penetración para detectar vulnerabilidades frecuentes en aplicaciones web:
· NIST SP 800-115
3.5.2 La Guía Técnica para Evaluaciones y Pruebas de Seguridad de la Información NIST SP 800-115 (Technical Guide to Information Security Testing and Assessment), fue publicada en septiembre del 2008 por el NIST (Scarfone et al. 2008). Incluye la realización de pruebas de penetración y propone las siguientes fases.
· Fase de Planificación: Se identifican las reglas que deben seguirse durante la prueba de penetración y se crean las condiciones técnicas y organizativas requeridas. En la fase de planificación se evalúan los riesgos que implican el desarrollo y la manera en que se van a sobrellevar y las acciones que se van a tomar para mitigar los inconvenientes que puedan surgir.
· Fase de Descubrimiento: Se realiza el escaneo y recopilación de información de la infraestructura computacional de la entidad y el descubrimiento de vulnerabilidades. En la fase de descubrimiento se evalúan los posibles impactos que tendrán el desarrollo respecto a otras funcionalidades, así como la infraestructura que se tiene actualmente, flujos de operación y reglas actuales.
· Fase de Ejecución: Se comprueban las vulnerabilidades previamente descubiertas. En la fase de ejecución, una vez que el desarrollo comenzó y las fases van avanzando se enfrentan y corrigen las vulnerabilidades presentadas para evitar que estas lleguen a un ambiente productivo.
· Fase de Documentación y Reporte: Se genera un reporte con los problemas de seguridad encontrados. En la fase de documentación se documenta todo el proceso, así como los riesgos detectados y las propuestas para evitarlos.
Otro caso, implementar herramientas Pentest, por ejemplo, Tenable Nessus:
· Estándar CVE (Common Vulnerabilities Exposures)
· Metaslploit: análisis de las vulnerabilidades, explotación y post-explotación

3.5.3 Gracias a las prácticas mencionadas se minimizan los problemas y afectaciones una vez que se liberan en producción. Una vez llegado este punto, se reinicia el ciclo del desarrollo para asegurar la calidad de futuras funcionalidades que serán integradas como parte del sistema integral.

3.6 Modelos de ciclo de vida de software.
3.6.1 En la industria de software existen diversos modelos a emplear dependiendo de las características de los proyectos a desarrollar, algunos de los modelos más usuales se describen a continuación:
3.6.2 Modelo prototipo.
3.6.2.1 El modelo prototipo se refiere a que el producto de software debe tener una representación preliminar antes del desarrollo; la idea es que el equipo participe en las etapas del proyecto con recomendaciones respecto a requerimientos, procesos, formatos y registros.
3.6.3 [image: Diagrama

El contenido generado por IA puede ser incorrecto.]El Modelo prototipo se clasifica en:

· Rápido desarrollo de la aplicación.
· Evolutivo.
· Desechable.
· Prueba de Concepto

3.6.4 Rápido Desarrollo de la Aplicación.
3.6.4.1 Es el modo más simple de prototipo, este permite crear y probar diseños de entrada y salida. Se utiliza una herramienta para crear pantallas, reportes, mensajes, reglas e instrucciones.
3.6.4.2 Cuando el prototipo está realizado, se pueden mostrar las pantallas a los usuarios finales para que ellos a su vez den sus comentarios y se hagan los cambios necesarios. Después de haber sido aprobado el diseño, ya puede iniciarse la etapa de codificación del proyecto.
3.6.4.3 Si el proyecto requiere una herramienta como Developer, Visual Basic, Power Builder, etc., se puede utilizar este prototipo para hacer el desarrollo más eficiente, efectivo y rápido. Se debe tomar en cuenta el tipo de funcionalidad y el número de pantallas.

3.6.5 Evolutivo.
3.6.5.1 En un prototipo evolutivo, las funciones se desarrollan en etapas tempranas, seguidas de un enfoque de usuario. Las funciones deben ser optimizadas a las necesidades de los usuarios finales, si es necesario, se deben añadir funcionalidades.
3.6.5.2 Este tipo de modelo se utiliza en proyectos que requieran alta participación de los clientes en función de sus requerimientos. Es importante señalar que el contrato del proyecto debe especificar claramente las condiciones a cumplir en: fechas, esfuerzo, calidad y funcionalidades.

3.6.6 Desechable.
3.6.6.1 En un prototipo desechable, el entendimiento de los requerimientos es muy práctico, los seguimientos de las fases de proyectos son desechados después de que se cumplieron los objetivos. Los desarrollos nuevos se vuelven a iniciar con un enfoque riguroso.
3.6.6.2 Este tipo de modelo se utiliza en sistemas donde el cliente no conoce a detalle los requerimientos, el tipo de solución o sistema que será desarrollado. El procedimiento consiste en hacer una negociación con los clientes acerca del tipo de servicio que será proporcionado, el tipo de trabajo, el tiempo y esfuerzo que se requiera.
3.6.7 Prueba de Concepto.
3.6.7.1 En este prototipo se establece una arquitectura para satisfacer los requerimientos del sistema. También, se determinan los componentes que se requieren antes de hacer el compromiso con los clientes. Para desarrollar una prueba de concepto se debe:
· Identificar los componentes necesarios en el área tecnológica requerida.
· Identificar las características de los componentes para la aplicación.
· Construir objetos sencillos, probarlos y verificar las alternativas de implementación.
· Mantener el enfoque, dar seguimiento al tiempo y esfuerzo necesarios en el desarrollo.
3.6.8 Modelo cascada.
3.6.8.1 El modelo de ciclo de vida Cascada es uno de los más utilizados en la industria del Software, sirve como base para la construcción de los demás modelos de ciclo de vida, la palabra cascada sugiere, el esfuerzo necesario para introducir un cambio en las fases más avanzadas de un proyecto.
3.6.8.2 Este modelo indica que el desarrollo de software se puede hacer a través de una secuencia simple de fases. Cada fase tiene un conjunto de metas bien definidas y las actividades dentro de una fase contribuyen a la satisfacción de metas de esa fase o quizás a una subsecuencia de metas de la fase. Las flechas muestran el flujo de información entre las fases.
3.6.8.3 Las flechas continuas de avance muestran el flujo normal. Las flechas semi-continuas representan la retroalimentación que existe entre las diferentes fases, de esta forma, cualquier error de diseño detectado en la etapa de prueba conduce al rediseño y nueva programación del código afectado, aumentando los costos del desarrollo.
3.6.8.4 Un ejemplo de una metodología de desarrollo en cascada es:
[image: Diagrama

El contenido generado por IA puede ser incorrecto.]

· Análisis de requisitos
· Diseño del sistema
· Diseño del programa
· Codificación
· Pruebas
· Implantación
· Mantenimiento

3.6.8.5 Este modelo es adecuado para proyectos en donde se especifican claramente los requerimientos, son proyectos pequeños y se requiere que haya una buena retroalimentación del cliente.

3.6.9 Características generales.
3.6.9.1 Un proyecto progresa a través de una secuencia ordenada de pasos partiendo de la especificación de requerimientos hasta el mantenimiento del mismo.
3.6.9.2 El método realiza una revisión al final de cada etapa para determinar si está preparado para pasar a la siguiente etapa.
3.6.9.3 Cuando la revisión determina que el proyecto no está listo para pasar a la siguiente etapa, permanece en la etapa actual hasta que esté preparado.
3.6.9.4 El modelo en cascada está dirigido por documentos; es decir, los productos principales del trabajo que se pasan de etapa en etapa son documentos.
3.6.9.5 El modelo de cascada se utiliza correctamente para ciclos de productos en los que se tiene una definición estable del producto, y también cuando se está trabajando con metodologías técnicas conocidas.
3.6.10 Ventajas
3.6.10.1 Ayuda a localizar errores en las primeras etapas del proyecto a un bajo costo.
3.6.10.2 Proporciona requerimientos que los desarrolladores necesitan.
3.6.10.3 Ayuda a minimizar los gastos de la planeación porque permite realizarla sin problemas.
3.6.10.4 Este modelo evita una fuente común de errores importantes, eliminando los cambios que se pueden producir a medio camino.
3.6.11 Desventajas
3.6.11.1 No proporciona resultados tangibles en forma de software hasta el final del ciclo de vida.
3.6.11.2 Dificultades para especificar claramente los requerimientos al comienzo del proyecto.
3.6.11.3 Para un proyecto de desarrollo rápido, el modelo en cascada puede suponer una cantidad excesiva de documentación.
3.6.11.4 El modelo genera pocos signos visibles de progreso hasta el final. Esto puede dar la impresión de un desarrollo lento, existe la incertidumbre de los clientes si sus proyectos serán entregados a tiempo.

3.7 Modelo Desarrollo Rápido de Aplicaciones.
3.7.1 El Desarrollo Rápido de Aplicaciones, abreviado como RAD (del inglés Rapid Application Development) es un modelo de ciclo de vida que enfatiza un desarrollo extremadamente corto. Se trata de una adaptación del modelo tradicional en cascada en el que se logra el desarrollo rápido utilizando una construcción basada en componentes. Si se comprenden bien los requisitos y se limita el ámbito del proyecto, el proceso RAD permite crear un sistema completamente funcional dentro de periodos cortos de tiempo (entre 60 y 90 días).
3.7.2 Dadas las condiciones de los proyectos que se desarrollan en la Organización, el modelo que se adapta a las necesidades del desarrollo de proyectos, es el modelo de ciclo de vida RAD adaptable es Scrum. A continuación, se describe el modelo aplicado en la organización:

3.7.3 Gestión del Backlog.
3.7.3.1 Todos los requisitos relacionados con la aplicación, se recogen en un listado priorizado que recibe el nombre de pila de producto o Backlog. Y los elementos que encontramos en este backlog se denominan “user stories” o historias de usuario. Estas historias no son más que requisitos únicos, cortos, fácilmente redactarles, y que definen un requisito de forma rápida y en el propio lenguaje del usuario.
3.7.4 Roles.
· Los Usuarios del producto o aplicación.
· Los Clientes y Vendedores.
· Los Gestores y Directivos.

3.7.5 Reunión diaria.
3.7.5.1 La reunión es diaria, normalmente por la mañana y todos los miembros del equipo están presentes.
3.7.5.2 En la reunión se realiza la revisión de actividades, como cerro el día anterior, actual, así como lo planeado al día siguiente y si se ha encontrado algún problema para conseguir los objetivos.
3.7.5.3 Al terminar los desarrollos se procede a la publicación en ambiente de pruebas (QA), en colaboración con el usuario. En caso de errores, se envían a desarrollo para su corrección.
3.7.5.4 Una vez concluidas las pruebas, se liberan los productos a Producción.

3.7.6 Proceso.
3.7.6.1 Aquí se puede observar que todo el proceso se inicia con la recogida de requisitos y terminará cuando el resultado del feedback proporcionado por las partes implicadas sea que el producto está terminado.

3.8 Modelo de ciclo de vida de cascada.
3.8.1 Otro modelo es el modelo de ciclo de vida es el de Cascada. A continuación, se describe el modelo aplicado en la Organización:
3.8.2 Para el ciclo de vida Scrum o Cascada, los productos de trabajo desarrollados pasarán de una fase a otra de forma independiente tal como se muestra en el diagrama, para que en la última fase se obtenga el producto o los productos que se entregarán al cliente. A continuación, se explican las fases del ciclo de vida Scrum y Cascada aplicado a XIGA.
[image: scrum-proceso]

	Fase
	Descripción
	Criterio de fin de fase

	Evaluación de Comité Análisis
	En esta Fase se colocan los proyectos a en los que se ha especificado compromiso de fechas a corto plazo o los que se les ha cambiado la prioridad o bien, en los cuales el requerimiento no es muy explícito su especificación de alta prioridad y se necesita más información hacia los integrantes de comité para su desarrollo.
	· Comité evalúa la prioridad de la Solicitud de Desarrollo de Software.
· Seguimiento de Observaciones de Solicitud de Desarrollo de Software.
· Gestión de Problemas.

	Fase de Evaluación y Análisis
	En esta Fase se analizan los requerimientos de los usuarios finales del software para determinar qué objetivos debe cubrir.
Es importante señalar que en esta Fase se debe considerar todo lo que se requiere del sistema y será aquello lo que seguirá en las siguientes etapas.
	· PMO canaliza proyectos priorizados.
· Evaluación de la solicitud por Responsable del Proyecto.
· Plan de Administración del Proyecto.
· [image:]Plan del Proyecto (Estimación, Plan de Actividades).

	
Fase de Aceptación de Fechas Estimadas

	En esta Fase el cliente acepta o rechaza el plan de actividades propuesto para el desarrollo de Software.
	· Notificación de Inicio de Proyecto.
· Reunión de Arranque.

	
Fase de proyectos planeados

	En esta fase se colocan los proyectos aceptados por el cliente y que según sus fechas son pospuestos para iniciar su diseño.
	· Notificación de Inicio de Proyecto.
· Iniciar Diseño

	Fase de diseño
	En la Fase de Diseño, se descompone y organiza el sistema en elementos que puedan elaborarse por separado, aprovechando las ventajas del desarrollo en equipo. Aquí se elabora la descripción de la estructura global del sistema y la especificación de lo que debe hacer cada una de sus partes, así como la manera en que se combinan unas con otras.
Es la fase en donde se especifican los casos de prueba unitaria e Integrales
	· Diagrama componentes
· Documento de diseño de software.

	Fase de Desarrollo
	Es la fase de programación del proyecto mismo. Aquí se desarrolla el código fuente, haciendo uso de prototipos así como son realizadas las pruebas unitarias por el desarrollador.
	· Programas revisados y probados.
· Ejecución de casos de prueba integrales.

	Fase de Pruebas del Proyecto
	Los elementos,	ya programados, se ensamblan para componer	el sistema integralmente y se comprueba que funciona correctamente	antes de ser entregado al usuario final.
	· Revisión de solicitud de Software
· Corrección de reporte de Observaciones
· Notificación de Fin de Desarrollo

	Fase de Pruebas de Aceptación
	Pruebas realizadas por el cliente del proyecto en el ambiente real, en la cual se va a desempeñar la aplicación.
	· Ejecutar pruebas de aceptación
· Registro de incidencias

	
Fase de Liberación

	Una vez aprobado el proyecto se acepta y es cerrado
	· Reporte de terminación del proyecto

4. Documentación de referencia
	Código
	Documentos

	N/A
	-

5. Registros
	Código
	Registros
	Tiempo de Conservación
	Responsable de Conservarlo
	Lugar de Almacenamiento

	N/A
	-
	-
	-
	-

6. Glosario
6.1 Scrum: Es un marco de trabajo para desarrollo ágil de software.
6.2 SDLC: ciclo de vida del desarrollo de sistemas.

7. Anexos
7.1 N/A.
	Documento de clasificación Reservada. Este documento contiene información exclusiva la cual es propiedad XIGA Movilidad Inteligente, S.A. de C.V. Este documento y su contenido no pueden ser duplicados o mostrados a cualquier otra compañía sin la autorización escrita de XIGA Movilidad Inteligente, S.A. de C.V.

	
Página 1 de 9

Documento de clasificación Reservada. Este documento contiene información exclusiva la cual es propiedad XIGA Movilidad Inteligente, S.A. de C.V. Este documento y su contenido no pueden ser duplicados o mostrados a cualquier otra compañía sin la autorización escrita de XIGA Movilidad Inteligente, S.A. de C.V.
	
	
	
Página 9 de 9

image1.png
Desarcl,
Entogay
Retoalmentacién

Gl prototpo.

HODELO DE CONSTRUCCION DE PROTOTIFOS.

image2.png
Especificaion de
requeimientys

|
|
|
PR

()

image3.png
Las partes impicadas dan feedback

Incorporando
el feedback Ciclos diarios
Peticién de
-_) = feedback
—
=
Recogida de s
requisitos =
— —)
Gestion del Planificacion Ejecutar Entrega a las

backlog del sprint el sprint partes implicadas

image4.png

